On Sums of Primes and Triangular

نویسندگان

  • Zhi-Wei Sun
  • ZHI-WEI SUN
چکیده

We study whether sufficiently large integers can be written in the form cp+ Tx, where p is either zero or a prime congruent to r mod d, and Tx = x(x + 1)/2 is a triangular number. We also investigate whether there are infinitely many positive integers not of the form (2ap−r)/m+Tx with p a prime and x an integer. Besides two theorems, the paper also contains several conjectures together with related analysis and numerical data. One of our conjectures states that each natural number n 6= 216 can be written in the form p + Tx with x ∈ Z and p a prime or zero; another conjecture asserts that any odd integer n > 3 can be written in the form p + x(x + 1) with p a prime and x a positive integer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

A pr 2 00 8 Preprint , arXiv : 0803 . 3737 CONJECTURES ON SUMS OF PRIMES AND TRIANGULAR NUMBERS

In this paper we study integers of the form cp + Tx, where p is either zero or a prime congruent to r mod d, and Tx = x(x + 1)/2 is a triangular number. We also investigate integers of the form (2ap− r)/m+ Tx with p a prime. Several conjectures are raised with related analysis and numerical data; our main conjecture asserts that each natural number n 6= 216 can be written in the form p + Tx wit...

متن کامل

On Sums of Primes from Beatty Sequences

Ever since the days of Euler and Goldbach, number-theorists have been fascinated by additive representations of the integers as sums of primes. The most famous result in this field is I.M. Vinogradov’s three primes theorem [7], which states that every sufficiently large odd integer is the sum of three primes. Over the years, a number of authors have studied variants of the three primes theorem ...

متن کامل

Algebraic Trace Functions over the Primes

We study sums over primes of trace functions of `-adic sheaves. Using an extension of our earlier results on algebraic twist of modular forms to the case of Eisenstein series and bounds for Type II sums based on similar applications of the Riemann Hypothesis over finite fields, we prove general estimates with power-saving for such sums. We then derive various concrete applications.

متن کامل

Polygonal Numbers

In the article the formal characterization of triangular numbers (famous from [15] and words “EYPHKA! num = ∆ + ∆ + ∆”) [17] is given. Our primary aim was to formalize one of the items (#42) from Wiedijk’s Top 100 Mathematical Theorems list [33], namely that the sequence of sums of reciprocals of triangular numbers converges to 2. This Mizar representation was written in 2007. As the Mizar lang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009